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Fractal Structure of Quantum Gravity and Relic 
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It is argued that the large-scale (>7 ~ cosmic microwave background anisotropy 
detected in the COBE cosmic experiment can be considered as a trace of the 
fractal structure of quantum gravity. 

1. INTRODUCTION 

The universe seems to exhibit a fractal structure. Superclusters (large 
clusters containing up to hundreds of thousands of galaxies) of size about 
50 Mpc are separated by almost empty space: the mean distance between 
two superclusters is about I00 Mpc. Clusters of galaxies (a typical cluster 
size is about 5 Mpc) containing hundreds of galaxies are, in turn, separated 
by voids of about a few Mpc. This fractal hierarchy can be easily traced to 
subnuclear scales (10 -13 cm). Quantitatively, the large-scale fractal structure 
of the universe can be described in terms of the mass interior to a spherical 
volume of a certain radius r. A typical dependence measured by observing 
the 21-cm hydrogen emission of  gas clouds moving around the galaxy is 

A~(r) ~ r% ~x ~ 1 (1) 

whereas a luminous mass associated with the light would yield only r - In .  

It is commonly accepted that additional mass is present in the form of 
nonluminous dark. matter (Sancisi and van Albada, 1987). Since a < 3 in 
the power law (1), we have a typical mass distribution on a fractal set 
embedded in D = 3 space. 
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On the other hand, one of the most important recent developments in 
gravitational theory is related to the fractal-based regularization of quantum 
gravity (Knizhnik et al., 1988). In view of this one may believe that a fractal 
structure is a fundamental property of physical space-time itself. 

In this paper we interpret the COBE satellite data on the anisotropy of 
the cosmic microwave background radiation (CMBR) as a possible manifesta- 
tion of the fractal structure of the universe. 

2. ON DISCRETE SYMMETRY IN QUANTUM GRAVITY 

The regularization of two-dimensional quantum gravity by Knizhnik, 
Polyakov, and Zamolodchikov (1988) (KPZ) follows from the fact that the 
continuum formulation (Polyakov, 1987) and the dynamical triangulation 
(Boulatov et al., 1986) are equivalent. On the basis of the Polyakov (1981) 
regularization procedure, where the position of the surface in the embedding 
space X~ and the internal surface geometry (gab) are treated as independent 
fields, one can construct a Nambu-like action 

S[X~, gabl 

1 f OX~, OX~ 
= ~ j,,, gab O~ O~ 

+ fermion terms 

- -  (det g)lr2 d2~ q_ ~ fM (det g)U2 d2~ 

(2) 

where ~ = (~l, 62) is the parametrization of the manifold M defined by 
function X~ = X~(~). This or a similar Nambu-Goto action usually appears 
in the string functional integral taken with respect to both independent fields 
X and g. 

In the dynamical triangulation (Boulatov et al., 1986) of 2D quantum 
gravity, as well as in higher dimensional versions (Ambjcm et al., 1993), 
the path integral over the internal metric gab is replaced by summation of all 
the different types of surface configurations with a given number of triangles. 
For the sake of preserving reparametrization invariance after discretization 
(Boulatov et al., 1986), the topology of the manifold M is usually specified 
as the sphere S 2 (Boulatov et al., 1986; Kawamoto, 1993). The partition 
function takes the form 

Z(A) = IM ~X  5~g exp(-S) (3) 

or its discrete counterpart (Kawamoto, 1993) 
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Zreg(A ) --- ~ Zm(G)~Na2,A (4) 
G 

where A is the total area, N is the number of equilateral triangles, and a 2 is 
the area of a triangle. The matter part of the partition function Zm(G) comes 
from the fermion term of the KPZ Lagrangian 

= $1)~ (5) 

where vet a are ordinary "zweibeins." 
Formally substituting for the functional integral (3) its discrete counter- 

part (4), we need to sum over all possible triangulations of S 2. Practically, 
we are to impose some additional conditions to avoid summation over singular 
triangulations, i.e., triangulations which include links with coinciding ends. 
Referring the reader to Boulatov et  al. (1986) and Kawamoto e t  al.  (1992) 
for detailed study of triangulations and fractal properties of related partition 
functions, we shall concentrate on some of their properties significant for 
phenomenological applications. 

1. The triangulation procedure can be extended to an S n sphere (AmbjCm 
e t  al . ,  1993), which, as a boundary of  an (n + l)-dimensional simplex, can 
be divided into n-dimensional simplices. 

2. From the conformal invariance standpoint, of all the subdivisions of 
S n, the subdivision into equilateral simplices is preferable. 

3. The whole partition function (3) is related to a physical object which 
is isotropic (in the sense of having no preferable direction on Sn), but may 
have a discrete symmetry group and hence have certain distinguished correla- 
tion angles. For example, if we sum over all possible triangulations of S 2 
using equilateral triangles, the correlations of any observables depending on 
matter fields increase at angles 0, 2-rr/3, 4-rr/3 because of the Z3 symmetry 
group. Similarly, the correlations should increase at tetrahedron group angles 
when S 3 is considered. 

4. Two-dimensional quantum gravity can be regarded as only the simplest 
case of extended-object physics. However, when reducing the physics from 
arbitrary n-dimensional space to n - 1 dimensions we restrict S n triangulation 
with n-dimensional simplices to S n-l triangulation with (n - 1)-dimensional 
ones, because an (n - 1)-dimensional simplex is a boundary of an n-dimen- 
sional one. Thus, for the case of equilateral simplices we should always have 
Z3-symmetry in D = 2 or tetrahedron symmetry in D = 3. 

3. DISCRETE SYMMETRY AS A POSSIBLE SOURCE OF R E L I C  
RADIATION ANISOTROPY 

Let us consider the data on relic radiation anisotropy (Smoot et  al . ,  

1992). The relic microwave radiation (T = 2.73 K) has not been significantly 
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affected by late-stage processes in the universe, which is why its amplitudes 
depend mostly on the parameters of the early universe. It is worth noting 
that the large-scale anisotropy of relic radiation found in COBE and RELICT- 
1 experiments has a rather small value, A T / T  ~ 10 -5, but a high confidence 
level--up to 90%, including systematic errors (Smoot e t  a l . ,  1992; Strukov 
e t  a l . ,  1993). 

The first aim of the observers in both COBE and RELICT experiments 
was to measure the dipole and quadrupole components of the microwave 
background (Smoot e t  a l . ,  1992) and to test for the existence of an anomalous 
signal over the mean background (Strukov e t  a l . ,  1993). Based on the COBE 
experiment data, the autocorrelation function 

C(a) = (AT(0)AT(0 + c O )  (6) 

has been obtained. Here ct is the angular separation and 0 is an angular 
coordinate on a certain two-dimensional plane. 

Qualitatively, the behavior of the relic signal autocorrelation function 
(see Fig. 1) is the following: it has a sharp maximum, it has another maximum 
localized at ot close to 120 ~ and it has two minima at 60 ~ and 180 ~ (the 
maximum at ot close to 90 ~ is possibly related to a quadrupole component 
of CMBR and is less confident (Bennet e t  a l . ,  1992)). The behavior of the 
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Fig. 1. Correlation function C(et) at various galactic latitude cuts for the 53-MHz map. 
(Reprinted from Smoot et al.. 1992.) 
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autocorrelation functions is almost the same for the data obtained at frequen- 
cies 53 and 90 GHz (Smoot et  al., 1992). 

The correlation function (6) was studied in Wright et  al. (1992) in 
connection with present cosmological models. In particular, an attempt was 
made to compare the COBE data with certain dark matter (DM) models. 
This comparison did not go well. For instance, the relic density anisotropy 
given by the Holtzman (1989) model increases monotonously with a increas- 
ing from 60 ~ to I80 ~ (Wright et  al., 1992). 

Taking into account all the mentioned arguments, we interpret the regu- 
larities of the behavior of the autocorrelation function (6) as a manifestation 
of Z3-symmetry. The presence of Z3-symmetry does not imply n preferable 
directions in space here; instead we have a preferred separation angle. It 
should be mentioned that in the theoretical COBE study of Wright et al. 
(1992) the best-line fit for the autocorrelation function (6) was taken in 
the form 

C(~) = ,4 + B cos ~ + CO exp - (7) 

although the locations of autocorrelation function maximas at 0 ~ and 120 ~ 
and minimas at 60 ~ and 180 ~ suggest the more direct parametrization 

C(~) = ,4 + B cos 3~ + C~ exp - (8) 

4. ON THE FLAT-SPACE LIMIT OF SIMPLICIAL QUANTUM 
GRAVITY 

The simplest way to imagine how the distribution of relic radiation 
with simplicial symmetry could emerge from space-time geometry is by 
considering simplicial quantum gravity (Ambjorn and Jurkiewicz, 1992; 
Agishtein and Migdal, 1992). This theory enables one to describe only pure 
gravity without matter fields in a consistent way. An exact solution for matter 
coupling has been found only for the two-dimensional case (Kazakov et  aL, 
1985; Boulatov et al., 1986). For higher dimensions, if we want to describe 
nature as it is, we have to face a lot of matter coupling problems. The question 
of our particular concern should be the existence of the fiat-space continuous 
limit. Here we analyze problems arising in the D > 2 continuous limit of 
simplicial quantum gravity and suggest a way to avoid them. 

The very fact which, in our opinion, led to the KPZ regularization of 
two-dimensional quantum gravity was the fractal nature of a dynamically 
triangulated surface, rather than the simplicial structure itself. [An investiga- 
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tion in some way similar has been performed by Crane and Smolin (1986) 
without using triangulation at all.] That is why we should expect some fractal 
structure which enables us to remove the divergences. 

Indeed, in direct studies of quantum field theory models on fractal space- 
time (Eyink, 1989a,b) as well as in studies devoted to fractal lattices (Gefen 
et al., 1983a,b) it has been shown that fractal sets, being scale invariant, are 
essential for using the renormalization group (RG) technique. Unfortunately, 
the price for well-defined scale properties is the lack of translation invariance. 
This leads to the divergences. Until now this obstacle has not been com- 
pletely overcome. 

As we consider the fiat-space limit of (Euclidean) simplicial gravity, we 
must pay attention to those fractal sets which are suitable for triangulation 
of an S ~ sphere. Thus, we consider the Sierpinski hypergasket, a generalization 
of the Sierpinski gasket constructed in two dimensions. Let us recall the 
construction procedure (Eyink, 1989a, b). 

Partitioning the unit d-simplex in R a into (d + 2) subsimplices of edge 
length 1/2, one (i) removes the open central subsimplex and (ii) repeats the 
operation with the (d + 1) closed subsimplices. 

Sierpinski gaskets obtained in this way can be used for triangulation of 
an S"-sphere. Their self-similarity is very relevant to RG applications. Their 
shortcomings are also evident. They are not invariant under translations, even 
inside a single gasket, and they are not dense in the embedding space. That 
is why we seek a better simplicial fractal set in this regard. 

Let us modify the gasket generating procedure. To clarify considerations, 
let us imagine a black unit simplex. On the first step of the recursive procedure 
we remove its central open part; the central subsimplex becomes white, and 
then--here is the difference--we repeat the procedure with all (d + 2) 
subsimplices. The generalization to white pieces seems evident: the central 
part of each simplex reverses its color. The difference between the Sierpinski 
gasket and our gasket is shown in gray in Fig. 2. 

Since the numbers of black and white subsimplices at the (k + 1) stage 
of the recursive procedure are 

n ~  l = ( d +  1)nkw+n~ 

n k+l -- ( d +  l)n k + nkw (9) 

for asymptotically large k we obtain 

1 nk ~ ~ (d + 2) k 
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Fig. 2. Second stage of the (2D) fractal gasket construction. The Sierpinski gasket is 
shown in black. The new part appearing in the yin-yang gasket is shown in gray. 

simplices of  each color of 8 = 2 -k edge size. The fractal dimension of  the 
constructed set is 

rather than 

D = log(d + 2) (10) 
log 2 

D = log(d + I) (11) 
log 2 

for the Sierpinski gasket, but the scaling law is identical: 

2 k. ~ (d)  = ~(d)  (12) 

As far as we know, there is no commonly accepted name for such a set. 
Here, as the relation between black and white in the construction is much 
like the ancient Chinese yin and yang symbol, we can informally call it a 
yin-yang gasket. 

The geometrical properties of  the set constructed above as a building 
block for a piecewise approximation of an S n sphere (n > 2) require further 



260 Altaisky, Bednyakov, and Kovalenko 

investigation. Nevertheless, we can already mention the properties which 
could be useful in simplicial quantum gravity phenomenology. The gasket 
is (i) simplicial, (ii) scale-invariant, (iii) homogeneous, and (iv) dense in 
embedding space. 

5. CONCLUSION 

The data on relic radiation anisotropy obtained by both the RELICT 
and COBE groups are worth further deep investigation. Even the results 
already obtained from the data seem to be in good agreement with the 
hypothesis of a discrete symmetry of space-time arising from fractal quantum 
gravity. Other cosmological data, e.g., mass distribution, do not contradict 
the possible fractal structure of the Universe. It might be argued that both 
the tetrahedron symmetry, if found, and the fractai structure of the visible 
universe can be regarded as an argument for the existence of cosmic strings 
(Kibble, 1976). Indeed, cosmic strings, as topological defects which could 
be formed at a phase transition in the early universe, can have a number of 
cosmological applications. In particular, they can form a network with a 
fractal structure having tetrahedron symmetry (Aryal et al., 1986). 

Therefore, some new tests for possible discrete symmetry can be pro- 
posed. The simplest among them are (i) to test cos nix, n > 1, in (7) for 
other Z, groups, and (ii) to use COBE and RELICT data to search for the 
tetrahedron or other essentially three-dimensional space symmetry groups. 
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